Abstract

The discovery of the orexin system represents the single major progress in the sleep field of the last three to four decades. The two orexin peptides and their two receptors play a major role in arousal and sleep/wake cycles. Defects in the orexin system lead to narcolepsy with cataplexy in humans and dogs and can be experimentally reproduced in rodents. At least six orexin receptor antagonists have reached Phase II or Phase III clinical trials in insomnia, five of which are dual orexin receptor antagonists (DORAs) that target both OX1 and OX2 receptors (OX2Rs). All clinically tested DORAs induce and maintain sleep: suvorexant, recently registered in the USA and Japan for insomnia, represents the first hypnotic principle that acts in a completely different manner from the current standard medications. It is clear, however, that in the clinic, all DORAs promote sleep primarily by increasing rapid eye movement (REM) and are almost devoid of effects on slow-wave (SWS) sleep. At present, there is no consensus on whether the sole promotion of REM sleep has a negative impact in patients suffering from insomnia. However, sleep onset REM (SOREM), which has been documented with DORAs, is clearly an undesirable effect, especially for narcoleptic patients and also in fragile populations (e.g. elderly patients) where REM-associated loss of muscle tone may promote an elevated risk of falls. Debate thus remains as to the ideal orexin agent to achieve a balanced increase in REM and non-rapid eye movement (NREM) sleep. Here, we review the evidence that an OX2R antagonist should be at least equivalent, or perhaps superior, to a DORA for the treatment of insomnia. An OX2R antagonist may produce more balanced sleep than a DORA. Rodent sleep experiments show that the OX2R is the primary target of orexin receptor antagonists in sleep modulation. Furthermore, an OX2R antagonist should, in theory, have a lower narcoleptic/cataplexic potential. In the clinic, the situation remains equivocal, since OX2R antagonists are in early stages: MK-1064 has completed Phase I, and MIN202 is currently in clinical Phase II/III trials. However, data from insomnia patients have not yet been released. Promotional material suggests that balanced sleep is indeed induced by MIN-202, whereas in volunteers MK-1064 has been reported to act similarly to DORAs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.