Abstract

BackgroundHypercortisolism has emerged as a prominent clinical condition worldwide caused by biochemical cortisol excess in patients, and optimization treatment is needed urgently in the clinic. Previously, we observed that orexin-A/orexin type 1 receptor (OX1R) promoted cell proliferation, inhibited apoptosis, and increased cortisol release in adrenocortical cells. However, the functions of orexin-A/OX1R on autophagy and its molecular mechanism are not known. MethodsTransmission electron microscopy and confocal microscope were performed to detect autophagosomes. Western blot were performed to detect autophagy proteins. The cortisol concentration was assessed with an ELISA. FindingsOur data demonstrated that orexin-A/OX1R activated the mammalian target of rapamycin/p70 ribosomal protein S6 kinase-1 pathway, thereby inhibiting autophagy in H295R cells and Y-1 cells. Furthermore, the orexin-A/OX1R-mediated suppression of autophagy played a crucial role in cortisol secretion. Mechanistically, the expression of 3β-hydroxysteroid dehydrogenase/isomerase, the rate-limiting enzyme in cortisol synthesis, was increased with autophagy inhibition mediated by orexin-A/OX1R. InterpretationThis study provided the evidence that orexin-A/OX1R participated in modulating mTOR/p70S6K1/autophagy signaling pathway to promote cortisol secretion in adrenocortical cell. The findings suggest the mechanistic basis for disorders of cortisol secretion, providing the potential therapeutic targets for hypercortisolism treatment. FundThis work was supported by National Natural Science Foundation of China (32170603, 31871286), the Doctoral Start-up Foundation of Liaoning Province (20180540008, 2019-BS-298), the Natural Science Foundation of Liaoning Province (2019-ZD-0779), and Shenyang Science and Technology Plan Fund Projects (21-173-9-28).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call