Abstract

Accurate prediction of ore grade is essential for many basic mine operations, including mine planning and design, pit optimization, and ore grade control. Preference is given to the neural network over other interpolation techniques for ore grade estimation because of its ability to learn any linear or non-linear relationship between inputs and outputs. In many cases, ensembles of neural networks have been shown, both theoretically and empirically, to outperform a single network. The performance of an ensemble model largely depends on the accuracy and diversity of member networks. In this study, techniques of a genetic algorithm (GA) and k-means clustering are used for the ensemble neural network modeling of a lead–zinc deposit. Two types of ensemble neural network modeling are investigated, a resampling-based neural ensemble and a parameter-based neural ensemble. The k-means clustering is used for selecting diversified ensemble members. The GA is used for improving accuracy by calculating ensemble weights. Results are compared with average ensemble, weighted ensemble, best individual networks, and ordinary kriging models. It is observed that the developed method works fairly well for predicting zinc grades, but shows no significant improvement in predicting lead grades. It is also observed that, while a resampling-based neural ensemble model performs better than the parameter-based neural ensemble model for predicting lead grades, the parameter-based ensemble model performs better for predicting zinc grades.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call