Abstract
Given an exogenous treatment d and covariates x, an ordinary least-squares (OLS) estimator is often applied with a noncontinuous outcome y to find the effect of d, despite the fact that the OLS linear model is invalid. Also, when d is endogenous with an instrument z, an instrumental-variables estimator (IVE) is often applied, again despite the invalid linear model. Furthermore, the treatment effect is likely to be heterogeneous, say, µ1(x), not a constant as assumed in most linear models. Given these problems, the question is then what kind of effect the OLS and IVE actually estimate. Under some restrictive conditions such as a “saturated model”, the estimated effect is known to be a weighted average, say, E{ ω(x) µ1(x)}, but in general, OLS and the IVE applied to linear models with a noncontinuous outcome or heterogeneous effect fail to yield a weighted average of heterogeneous treatment effects. Recently, however, it has been found that E{ ω(x) µ1(x)} can be estimated by OLS and the IVE without those restrictive conditions if the “propensity-score residual” d − E( d| x) or the “instrument-score residual” z−E( z| x) is used. In this article, we review this recent development and provide a command for OLS and the IVE with the propensity- and instrument-score residuals, which are applicable to any outcome and any heterogeneous effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Stata Journal: Promoting communications on statistics and Stata
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.