Abstract

The occurrence of the ubiquitous and intriguing "ordinary-extraordinary" behavior of dynamics in solutions of charged macromolecules is addressed theoretically by explicitly considering counterions around the macromolecules. The collective and coupled dynamics of macromolecules and their counterion clouds in salt-free conditions are shown to lead to the "ordinary" behavior (also called the "fast" mode) where diffusion coefficients are independent of molar mass and polymer concentration and are comparable to those of isolated metallic ions in aqueous media, in agreement with experimental facts observed repeatedly over the past four decades. The dipoles arising from adsorbed counterions on polymer backbones can form many pairwise physical cross-links, leading to microgel-like aggregates. Balancing the swelling from excluded volume effects and counterion pressure with elasticity of the microgel, we show that there is a threshold value of a combination of polymer concentration and electrolyte concentration for the occurrence of the "extraordinary" phase (also called the "slow" mode) and the predicted properties of diffusion coefficient for this phase are in qualitative agreement with well-known experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call