Abstract

High Nb-containing TiAl (Nb–TiAl) alloys possess mechanical properties at elevated temperatures superior to conventional TiAl alloys. However, the strengthening mechanisms induced by Nb addition have been discussed controversial for a long time. In the present study, the dislocation structures in a polycrystalline high Nb–TiAl alloy after tensile tests at 700 and 900 °C were investigated by transmission electron microscope (TEM) observation. The results show that abundant double cross slip of ordinary dislocations is activated in the samples deformed at 700 °C. The dislocations are pinned at the jogs and numerous dipoles are observed. Debris can be commonly observed in the vicinity of screw dislocations. Trace analysis shows that the cross-slip plane is (1 1 0)γ at 700 °C but (1 1 1)γ octahedral plane at 900 °C. Three-dimensional (3D) dislocation structures, caused by cross-slip and annihilation of ordinary dislocations, were observed along the screw orientation. The dipoles and debris produced by high-temperature cross slip can be important for the strengthening of high Nb–TiAl alloys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call