Abstract

At the heart of many problems in mathematics, physics, and engineering lies the ordinary differential equation or its numerical equivalent, the ordinary finite difference equation. Ordinary differential equations arise not only in countless direct applications, but also occur indirectly, as reductions of partial differential equations (by way of separation of variables or by transform techniques for example; cf. Chaps. 9, 11). Likewise, the probably less familiar difference equations are of inherent interest (in probability, statistics, economics, etc.) but also appear as recurrence relations in connection with differential equations or as numerical approximations to differential equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.