Abstract

A new spectrophotometric technique for the determination of both ordinary and extraordinary complex refractive indices (CRIs) of a stretched polyethylene terephthalate (Mylar) film is proposed. The sample was placed between two identical polarizers, and the transmission spectra of two different configurations (incident polarization parallel and perpendicular to the Mylar film optical axis) were recorded. Ordinary and extraordinary complex refractive indices are then extracted by fitting the experimental spectra with a theoretical model that we had elaborated in advance. A new formula for transmittance dispersion, based on the Fresnel’s coefficients formalism and using the Cauchy model, was derived to describe n and κ wavelength dependence. The suggested theoretical model succeeded in reproducing the Mylar transmission spectra across the entire visible spectral range (400, 750 nm) for both configurations, and the retrieved dispersion curves of the refractive indices, extinction coefficients, and the birefringence are comparable to results found in the literature. The proposed method is fast, straightforward, easy to set up, and cost-effective. It proved to be an excellent alternative to more conventional methods such as spectroscopic ellipsometry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call