Abstract

We introduce Ordinal Synchronization (OS) as a new measure to quantify synchronization between dynamical systems. OS is calculated from the extraction of the ordinal patterns related to two time series, their transformation into D-dimensional ordinal vectors and the adequate quantification of their alignment. OS provides a fast and robust-to noise tool to assess synchronization without any implicit assumption about the distribution of data sets nor their dynamical properties, capturing in-phase and anti-phase synchronization. Furthermore, varying the length of the ordinal vectors required to compute OS it is possible to detect synchronization at different time scales. We test the performance of OS with data sets coming from unidirectionally coupled electronic Lorenz oscillators and brain imaging datasets obtained from magnetoencephalographic recordings, comparing the performance of OS with other classical metrics that quantify synchronization between dynamical systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.