Abstract

Threshold models are one of the most common approaches for ordinal regression, based on projecting patterns to the real line and dividing this real line in consecutive intervals, one interval for each class. However, finding such one-dimensional projection can be too harsh an imposition for some datasets. This paper proposes a multidimensional latent space representation with the purpose of relaxing this projection, where the different classes are arranged based on concentric hyperspheres, each class containing the previous classes in the ordinal scale. The proposal is implemented through a neural network model, each dimension being a linear combination of a common set of basis functions. The model is compared to a nominal neural network, a neural network based on the proportional odds model and to other state-of-the-art ordinal regression methods for a total of 12 datasets. The proposed latent space shows an improvement on the two performance metrics considered, and the model based on the three-dimensional latent space obtains competitive performance when compared to the other methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.