Abstract

In fair division of indivisible goods, l-out-of-d maximin share (MMS) is the value that an agent can guarantee by partitioning the goods into d bundles and choosing the l least preferred bundles. Most existing works aim to guarantee to all agents a constant fraction of their 1-out-of-n MMS. But this guarantee is sensitive to small perturbation in agents' cardinal valuations. We consider a more robust approximation notion, which depends only on the agents' ordinal rankings of bundles. We prove the existence of l-out-of-floor((l+1/2)n) MMS allocations of goods for any integer l greater than or equal to 1, and present a polynomial-time algorithm that finds a 1-out-of-ceiling(3n/2) MMS allocation when l = 1. We further develop an algorithm that provides a weaker ordinal approximation to MMS for any l > 1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call