Abstract
There are several real applications where the categories behind compositional data (CoDa) exhibit a natural order, which, however, is not accounted for by existing CoDa methods. For various application areas, it is demonstrated that appropriately developed methods for ordinal CoDa provide valuable additional insights and are, thus, recommended to complement existing CoDa methods. The potential benefits are demonstrated for the (visual) descriptive analysis of ordinal CoDa, for statistical inference based on CoDa samples, for the monitoring of CoDa processes by means of control charts, and for the analysis and modelling of compositional time series. The novel methods are illustrated by a couple of real-world data examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.