Abstract

The modification of the classical Smoluchowski theory for the rapid coagulation rate of colloidal particles, which takes account of the effect of the squeezing flow between colliding particles, has been widely accepted because it predicts experimental results adequately. However, it is not clear whether the modified theory, in which the coagulation rate is independent of the particle size, is applicable even to nanoparticles in solutions. In the present study, the rapid coagulation rates of silica particles in various 2 M chloride and 1 M potassium solutions were measured by using a low-angle light-scattering apparatus, and the dependence of rapid coagulation rate on the particle diameter, Dp, was investigated extensively. It was clearly shown that the rapid coagulation rate of spherical silica particles reduces by the orders of magnitude with decreasing particle size at Dp ≤ 300 nm, whereas it coincides with the value predicted by the modified theory at Dp ≥ 300 nm. A possible mechanism is proposed, and an analytical equation, which predicts the dramatic reduction in the rapid coagulation rate with decreasing particle size, is derived.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.