Abstract

This article considers a new improved balanced joint progressive type-II censoring scheme based on two different populations, where the lifetime distributions of two populations follow the generalized inverted exponential distribution with different shape parameters but a common scale parameter. The maximum likelihood estimates of all unknown parameters are obtained and their asymptotic confidence intervals are constructed by the observed Fisher information matrix. Furthermore, the existence and uniqueness of solutions are proved. In the Bayesian framework, the common scale parameter follows an independent Gamma prior and the different shape parameters jointly follow a Beta-Gamma prior. Based on whether the order restriction is imposed on the shape parameters, the Bayesian estimates of all parameters concerning the squared error loss function along with the associated highest posterior density credible intervals are derived by using the importance sampling technique. Then, we use Monte Carlo simulations to study the performance of the various estimators and a real dataset is discussed to illustrate all of the estimation techniques. Finally, we seek an optimum censoring scheme through different optimality criteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call