Abstract

A novel methodology for the order‐reduction of parabolic partial differential equation (PDE) systems with time‐varying domain is explored. In this method, a mapping functional is obtained, which relates the time‐evolution of the solution of a parabolic PDE with time‐varying domain to a fixed reference domain, while preserving space invariant properties of the initial solution ensemble. Subsequently, the Karhunen–Loève decomposition is applied to the solution ensemble on fixed spatial domain resulting in a set of optimal eigenfunctions. Further, the low dimensional set of empirical eigenfunctions is mapped on the original time‐varying domain by an appropriate mapping, resulting in the basis for the construction of the reduced‐order model of the parabolic PDE system with time‐varying domain. This methodology is used in three representative cases, one‐ and two‐dimensional (1‐D and 2‐D) models of nonlinear reaction‐diffusion systems with analytically defined domain evolutions, and the 2‐D model of the Czochralski crystal growth process with nontrivial geometry. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4142–4150, 2013

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call