Abstract
Ordering properties of boson operators have been very extensively studied, and q-analogues of many of the relevant techniques have been derived. These relations have far reaching physical applications and, at the same time, provide a rich and interesting source of combinatorial identities and of their g-analogues. An interesting exception involves the transformation from symmetric to normal ordering, which, for conventional boson operators, can most simply be effected using a special case of the Campbell-Baker-Hausdorff (CBH) formula. To circumvent the lack of a suitable q-analogue of the CBH formula, two alternative procedures are proposed, based on a recurrence relation and on a double continued fraction, respectively. These procedures enrich the repertoire of techniques available in this field. For conventional bosons they result in an expression that coincides with that derived using the CBH formula.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.