Abstract
We present a study on the growth of a low-density ordered Ge quantum dot (QD) on a nanohole patterned Si (0 0 1) substrate with periods in the order of microns by molecular beam epitaxy. Ordered Ge QDs with different periods were realized, the largest period being 15 µm. From the height-profile evolution of the QD with Ge deposition, it was found that the nanohole filling started at the initial Ge deposition, indicating an immediate nucleation and growth of QDs inside the nanoholes. Such a phenomenon is attributed to a lower surface chemical potential (SCP) inside the nanoholes, which is supported by calculated results on SCP evolution with growth and verified by the observation that the Ge adatoms around the nanoholes exhibited a higher probability of being incorporated into the nanoholes. In this scenario, low density ordered Ge QDs with any large periods could be achieved. The optical properties of the Ge QDs showed a remarkable improvement after a post-growth rapid thermal annealing treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.