Abstract
A Comparative computational analysis of ordering in higher homologous series of p-n-alkylbenzoic acids (nBAC), having 7(7BAC); 8(8BAC) and 9(9BAC) carbon atoms in the alkyl chain, has been carried out based on quantum mechanics and intermolecular forces. The evaluation of atomic charge and dipole moment at each atomic centre has been carried out through an all-valence electron (CNDO/2) method. The modified Rayleigh-Schrodinger perturbation theory, along with multicentered-multipole expansion method, has been employed to evaluate long-range intermolecular interactions, while a "6-exp" potential function has been assumed for short-range interactions. The total interaction energy values obtained through these computations were used to calculate the probability of each configuration at room temperature, nematic-isotropic transition temperature and above transition temperature using the Maxwell-Boltzmann formula. A comparative picture of molecular parameters such as total energy, binding energy and total dipole moment has been given. A model has been developed to describe the nematogenicity of these acids in terms of their relative order with molecular parameter introduced in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Theoretical and Computational Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.