Abstract

We are concerned with the following problem. Given a ring R and an epic R-field K, under what conditions can K be fully ordered? Epic R-fields can be constructed in terms of matrices over R; this makes it natural to consider matrix cones over R rather than ordinary cones of elements of K. Essentially, a matrix cone over R, associated with a given ordering of K, consists of all square matrices which either become singular or have positive Dieudonne determinant over K. We give necessary and sufficient conditions in terms of matrix cones for (i) an epic R-field to be orderable, (ii) a full order on R to be extendable to a field of fractions of R and (iii) for such an extension to be unique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.