Abstract

This report investigated the ordering of the alky chain of sphingomyelin (SMs) monolayers induced by cholesterol at the air/water interface using high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS). The SFG spectra of the three nature sphingomyelin/cholesterol mixture monolayers with two concentrations of the cholesterol at the air/water interface are performed under different polarization combination. A new resolved CH2 symmetric stretching (d+, ∼2834cm−1) and the CH3 symmetric stretching (r+, ∼2874cm−1) mode are applied to characterize the conformational order in the sphingomyelin/cholesterol mixture monolayers. It was found that the cholesterol make the sphingosine backbones more conformational order. During this process, the conformational order of the N-linked acyl chain remains unaltered. Moreover, the sphingosine backbones of SMs have much larger contributions to gauche defects of SMs than one in the N-linked acyl chain. These results presented here not only shed lights on understanding of the interactions of sphingomyelin molecules with cholesterol molecules at interface but also demonstrates the ability of HR-BB-SFG to probe such complicated molecular systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call