Abstract

Orientational hydrodynamic functions and short-time, self-orientational and collective orientational diffusion coefficients of dipolar hard-spherical colloids are performed on a homogeneous isotropic phase, as functions of the wave vector q, for various values of the volume fraction and the dipolar strength of the macroparticles. The calculation is based on the dynamic orientational structure factor, which is the time-dependent self-correlation of the orientation density. We assume that the time evolution of the orientation density is given by the Smoluchoswki's equation, taking into account the hydrodynamic interactions as well as the dipolar interaction. The former are considered assuming pairwise additivity. The importance of the dynamic orientational structure factor is that its initial slope can be measured in a depolarized light scattering experiment. The results predict a different behavior for dilute and for dense dipolar colloids. The ordering phenomena are studied via the ordering coefficients, which are the orientational hydrodynamic functions at q=0. The results show that as the dipolar colloid evolves to the instability line, the translational ordering velocity increases while the rotational one reduces. The short-time orientational diffusion coefficients at q=0 are also performed. They predict that near to the instability line, the dipolar colloid diffuses translationally more than rotationally. At very dilute concentration the dipolar colloid presents an unexpected dynamical behavior, which seems to indicate that the colloid could be evolving to a reentrant phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.