Abstract

Hydrophobic-like water monolayers have been predicted at the metal and some polar surfaces by theoretical simulations. However, direct experimental evidence for the presence of this water layer at surfaces, particularly at biomolecule and polymer surfaces, is yet to be validated at room temperature. Here we observe experimentally that an ordered molecular water layer is present at the hydrophobic fluorinated polymer such as polytetrafluoroethylene (PTFE) surface by using sum frequency generation vibrational spectroscopy. The macroscopic hydrophobicity of PTFE surface is actually hydrophilic at the molecular level. The macroscopically hydrophobic character of PTFE is indeed resulting from the hydrophobicity of the ordered two-dimension (2D) water layer, in which cyclic water tetramer structure is found. The water layer at humidity of ≤40% has a vibrational relaxation time of 550 ± 60 fs. The vibrational relaxation time in the frequency range of 3200-3400 cm-1 shows remarkable difference from the interfacial water at the air/H2O interface and the lipid/H2O interface. No discernible frequency dependence of the vibrational relaxation time is observed, indicating the homogeneous dynamics of OH groups in the water layer. These insights into the water layer at the macroscopically hydrophobic surface may contribute to a better understanding of the hydrophobic interaction and interfacial water dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call