Abstract

In the solvolytic liquefaction reaction of biomass, biopolymers are produced by bond-breakage in the complex lignocellulosic composition using the appropriate solvent and functionalizing the related fragments under mild conditions. The utilization of these bio-polyols as carbon sources has enhanced the conspicuous relevance in the handling of agroforestry by-products as an alternative to fossil fuel-based sources, taking into account the terms sustainability and environmental impact. In this study, a green and inexpensive method based on the resinification and subsequent foaming of bio-polyols produced by solvolytic liquefaction of the tree bark was adopted to synthesize carbon foams with a well-developed hierarchical porous structure. The novelty of this study to brighten the studies in the literature was to examine the characteristics of biomass-based carbon foams produced by adding two types of non-ionic surfactants (P123 and PEG3000) into the synthesis medium at different surfactant/biomass ratios (0.15 and 0.20 w/w). This study comprises a promising technique that promotes self-foaming in the existence of non-ionic surfactants to produce reticulated carbon foams from forest industry wastes with porous graphitic structure, high surface area (up to 758 m2/g), and controlled pore size distribution in the micro-pore region (dp<2 nm).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call