Abstract

Ordered multimodal porous carbon (OMPC) with a hierarchical nanostructure was prepared and explored as an anode for Li ion batteries. OMPC possesses unique structural characteristics, such as large surface area and mesopore volume, particularly the multimodal porosity composed of a well-developed 3D interconnected ordered macropore framework with open mesopores embedded in the macropore walls, which facilitate fast mass transport and charge transfer. Compared with ordered mesoporous carbon CMK-3, the OMPC not only demonstrates higher Li storage capacity, but also better cycling performance and rate capability. The enhancement in anode performance especially in cycling performance and rate capability is mainly attributable to the superb structural characteristics of the OMPC, particularly the open larger mesopores located in the ordered macropores, which act as efficient Li storage and buffer reservoirs to reduce volume change during the charge–discharge cycling especially at high rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.