Abstract

Highly ordered mesoporous CdS nanowire arrays were synthesized by using mesoporous silica as hard template and cadmium xanthate (CdR2) as a single precursor. Upon etching silica, mesoporous CdS nanowire arrays were produced with a yield as high as 93 wt%. The nanowire arrays were characterized by XRD, N2adsorption, TEM, and SEM. The results show that the CdS products replicated from the mesoporous silica SBA-15 hard template possess highly ordered hexagonal mesostructure and fiber-like morphology, analogous to the mother template. The current–voltage characteristics of CdS nanoarrays are strongly nonlinear and asymmetrical, showing rectifying diode-like behavior.

Highlights

  • Efforts in nanomaterials have rapidly expanded into the assembly of well-ordered two- and/or three-dimensional (2D and/or 3D) superstructures.The 3D superstructures provide possibilities to probe brand-new properties and applications due to the spatial orientation and arrangement of the nanocrystals [1,2,3]

  • The SBA-15 was synthesized at a high hydrothermal temperature of 130 °C to increase the mesotunnels, which are beneficial for the production of high-quality replica materials

  • The smallangle regions show three well-resolved diffraction peaks. It indicates a highly ordered 2D hexagonal mesostructure; at the same time, it implies that CdS nanoarrays replicate well the ordered mesoporous of the SBA-15 template and

Read more

Summary

Introduction

Efforts in nanomaterials have rapidly expanded into the assembly of well-ordered two- and/or three-dimensional (2D and/or 3D) superstructures.The 3D superstructures provide possibilities to probe brand-new properties and applications due to the spatial orientation and arrangement of the nanocrystals [1,2,3]. A single-source precursor, cadmium thioglycolate, was used to synthesize crystalline mesoporous CdS nanoarrays through SBA-15 silica template technique [23]. The results demonstrated that such mesoporous semiconductor nanoarrays with high crystallinity were exactly an inverse replica of SBA-15. These nanoarrays provide many opportunities for new applications as advanced materials; the systematic studies of the transport, optical, and electrical properties of these nanoarrays were not reported till now. For synthesis of CdS nanoarrays, typically, 0.05 g SBA-15 was added to a solution obtained by dissolving 0.34 g of cadmium alkyl xanthate in a certain amount of tetrahydrofuran, and the mixture was kept stirring at room temperature until the solvent was completely vaporized. The samples were degassed at 160 °C for 6 h in vacuum

Results and Discussion
70 Dark condition
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.