Abstract
Porous and nanoscale architectures of inorganic materials have become crucial for a range of energy and catalysis applications, where the ability to control the morphology largely determines the transport characteristics and device performance. Despite the availability of a range of block copolymer self-assembly methods, the conditions for tuning the key architectural features such as the inorganic wall-thickness have remained elusive. Toward this end, we have developed solution processing guidelines that enable isomorphic nanostructures with tunable wall-thickness. A new poly(ethylene oxide-b-hexyl acrylate) (PEO-b-PHA) structure-directing agent (SDA) was used to demonstrate the key solution design criteria. Specifically, the use of a polymer with a high Flory–Huggins effective interaction parameter, χ, and appropriate solution conditions leads to the kinetic entrapment of persistent micelle templates (PMT) for tunable isomorphic architectures. Solubility parameters are used to predict conditions for mai...
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.