Abstract

Mesoporous metals have shown significant potential for use in catalysis; however, controllably synthesizing highly ordered mesoporous amorphous alloys is a serious challenge. In this paper, a synthesis strategy was developed for generating ordered amorphous alloy nanowire arrays from mesoporous Ni-P by combining mesoporous silica templating with electroless plating. Mesoporous silica is externally grafted with -CH3 and internally covered with -NH2 acting as an efficient template, ensuring the formation of Ni-P nanowires inside the pore channels and endowing the final product with an ordered mesoporous array structure. The resulting ordered mesoporous Ni-P amorphous alloy nanowire arrays were subjected to a liquid-phase sugar hydrogenation to polyols and exhibited a highly superior catalytic performance (97% glucose conversion and 94% maltose conversion) within 4 h at 4 MPa hydrogen pressure and 373 K relative to those reference catalysts, including conventionally prepared Ni-P amorphous alloy nanoparticles (87% glucose conversion and 86% maltose conversion), ordered mesoporous Ni nanowire arrays (90% glucose conversion and 87% maltose conversion), and the commercial Raney Ni catalyst (76% glucose conversion and 66% maltose conversion). According to a comparative study, the enhanced catalytic efficiencies can be ascribed to the integration of amorphous alloy properties and mesoporous material characteristics. The composition- and morphology-controllable synthesis presented here might supply a general synthetic methodology for rationally designing ordered mesoporous amorphous alloys for a broader range of applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call