Abstract
The deposition onto an ordered mesoporous carbon (OMC) support of well dispersed PtM (M = Ru, Fe, Mo) alloy nanoparticles (NPs) were synthesized by a direct replication method using SBA-15 as the hard template, furfuryl alcohol and trimethylbeneze as the primary carbon sources, and metal acetylacetonate as the alloying metal precursor and secondary carbon source. The physicochemical properties of the PtM-OMC catalysts were characterized by N2 adsorption-desorption, X-ray diffraction, transmission electron microscopy, X-ray absorption near edge structure, and extended X-ray absorption fine structure. The alloy PtM NPs have an average size of 2−3 nm and were well dispersed in the pore channels of the OMC support. The second metal (M) in the PtM NPs was mostly in the reduced state, and formed a typical core (Pt)-shell (M) structure. Cyclic voltammetry measurements showed that these PtM-OMC electrodes had excellent electrocatalytic activities and tolerance to CO poisoning during the methanol oxidation reaction, which surpassed those of typical activated carbon-supported PtRu catalysts. In particular, the PtFe-OMC catalyst, which exhibited the best performance, can be a practical anodic electrocatalyst in direct methanol fuel cells due to its superior stability, excellent CO tolerance, and low production cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.