Abstract
Developments of high-performance cost-effective electrocatalyts that can replace Pt catalysts have been a central theme in polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). In this direction, nitrogen-doped carbon nanostructures free of metallic components have attracted particular attention. Here we show that directing graphitic carbon nitride frameworks into mesoporous architecture can generate a highly promising metal-free electrocatalyst for an oxygen reduction reaction (ORR) in an acidic medium. The ordered mesoporous carbon nitride (OMCN) was synthesized with a nanocasting strategy using ordered mesoporous silica as a template. A variety of characterizations revealed that the OMCN is constructed with graphitic carbon nitride frameworks and ordered arrays of uniform mesopores. The OMCN showed significantly enhanced electrocatalytic activity for ORR compared to bulk carbon nitride and ordered mesoporous carbon in terms of the current density and onset potential. A high surface area and an increased density of catalytically active nitrogen groups in the OMCN appear to contribute concomitantly to the enhanced performance of the OMCN. Furthermore, the OMCN exhibited superior durability and methanol tolerance to a Pt/C catalyst, suggesting its widespread utilization as an electrocatalyst for PEMFCs and DMFCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.