Abstract

Highly ordered arrays of Ni nanoholes and Fe 20Ni 80 antidots have been prepared, respectively, by replica/antireplica processing and sputtering techniques using nanoporous alumina membranes as templates. Geometrical characteristics as nanohole/antidot diameter, interpore distance and the overall hexagonal symmetry of arrays are controlled through the original templates. Experimental data on their hysteresis and magnetic domain structure have been taken by vibrating sample magnetometry and magnetic force microscopy, respectively. An analysis of the magnetization process, resulting magnetic anisotropy and magnetic domain structure is summarized considering the influence of those geometry aspects. In particular, the hexagonal symmetry and the density of nanohole/antidots determine the overall magnetic behavior, which is of interest in future high-density magnetic storage systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.