Abstract

The integration of cathodic hydrogen evolution reaction (HER) with thermodynamically favorable anodic oxidation reactions offers a sustainable alternative for electrochemical valorization. Herein, the atomic Ni modified CoP electrocatalyst featuring an elaborate ordered macroporous superstructure with abundant built-in mesopores has been developed from the ordered macroporous ZIF-67 single crystals, of which the distinctive structural advantages lead to a high HER performance. When the catalyst further underwent an electrochemical reconstruction, an outstanding activity with high Faradaic efficiency up to 96% of formate for ethylene glycol oxidation reaction (EGOR) can be afforded in alkaline electrolyte, as well as in the complex electrolyte of polyethylene terephthalate (PET) plastic hydrolysate. Remarkably, an exotic energy-saving pair-electrolysis system coupling HER and EGOR was explored in the PET plastic hydrolysate by employing this bifunctional electrocatalyst for concurrent H2 and commodity chemical production. Our work may showcase the rational structural engineering of advanced electrocatalysts for multiple electrochemical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call