Abstract
The Matsumoto K 0 -group is an interesting invariant of flow equivalence for symbolic dynamical systems. Because of its origin as the K-theory of a certain C ∗ -algebra, which is also a flow invariant, this group comes equipped with a flow invariant order structure. We emphasize this order structure and demonstrate how methods from operator algebra and symbolic dynamics combine to allow a computation of it in certain cases, including Sturmian and primitive substitutional shifts. In the latter case we show by example that the ordered group is a strictly finer invariant than the group itself.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.