Abstract

Diamond has a number of unique properties that make it an attractive electronic and bio-electronic material. Here we show the ordered growth of mammalian neurons, the principal electrogenic cells of the nervous system, on diamond. Proteins were specifically patterned on diamond surfaces by micro-contact printing. Mouse cortical neurons were then cultured on these substrates. Neuron adhesion and outgrowth was specific for those areas of the diamond that had been stamped with laminin, resulting in ordered growth of high resolution. Neurons survived in culture for the duration of the experiment, and laminin patterns were stable for at least 1 week in culture. The relative biocompatibility of diamond and the suitability of neuron interfacing with the hydrogen surface conductivity layer make this an interesting model for the formation of defined neuronal networks and for implants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.