Abstract

Probability maps are additive and normalised maps taking values in the unit interval of a lattice ordered Abelian group. They appear in theory of affine representations and they are also a semantic counterpart of Hajek's probability logic. In this paper we obtain a correspondence between probability maps and positive operators between certain Riesz spaces, which extends the well-known representation theorem of real-valued MV-algebraic states by positive linear functionals. When the codomain algebra contains all continuous functions, the set of all probability maps is convex, and we prove that its extreme points coincide with homomorphisms. We also show that probability maps can be viewed as a collection of states indexed by maximal ideals of a codomain algebra and we characterise this collection in special cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.