Abstract

Using self-assembly of block copolymer micelle loaded metal precursors, combined with a seeding growth route, we have developed a novel approach to create ordered metal nanoparticle (NP) arrays of controllable size over large areas (∼80mm2) on solid substrates. Atomic force microscopy (AFM), UV–Vis extinction spectrophotometry, and theoretical simulations were systematically carried out to determine the size and pattern of NP arrays, and locate the localized surface plasmon resonance (LSPR) peak. By tuning the molar ratios of precursors, hexagonal arrays of AuNPs of mean heights of 5.2±0.6nm, 8.3±1.7nm, and 10.0±2.1nm were obtained by self-assembly of poly(styrene-b-2-vinyl pyridine) micelle-loaded gold salt on glass. Further seeding growth was then used to enlarge the AuNPs to heights of 25.7 and 33nm and decrease the edge-to-edge inter-particle spacing. The optical response of AuNP arrays was determined by measuring and computing their absorbance spectra as a function of the cover medium refractive index over the range from 1 to 1.55; the measured spectra agree very well with the computations. The resonance wavelength red-shifts as the medium refractive index increases and the bulk sensitivity of the arrays increases with increasing AuNP size. When the edge-to-edge inter-particle spacing decreased to ∼50nm, coupling of adjacent AuNPs became apparent, as a shoulder which developed in the spectra. Also, the AuNPs were found to be embedded in the substrate glass by about ∼20–30%, as determined by comparing the experimental and computed bulk sensitivities. The fabrication technique devised is suitable for low-cost mass-manufacturing of large area arrays of ordered high-quality AuNPs on a substrate for biosensor or other applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call