Abstract
In this paper, we deal with a subclass of two-person finite SeR-SIT (Separable Reward-State Independent Transition) semi-Markov games which can be solved by solving a single matrix/bimatrix game under discounted as well as limiting average (undiscounted) payoff criteria. A SeR-SIT semi-Markov game does not satisfy the so-called (Archimedean) ordered field property in general. Besides, the ordered field property does not hold even for a SeR-SIT-PT (Separable Reward-State-Independent Transition Probability and Time) semi-Markov game, which is a natural version of a SeR-SIT stochastic (Markov) game. However by using an additional condition, we have shown that a subclass of finite SeR-SIT-PT semi-Markov games have the ordered field property for both discounted and undiscounted semi-Markov games with both players having state-independent stationary optimals. The ordered field property also holds for the nonzero-sum case under the same assumptions. We find a relation between the values of the discounted and the undiscounted zero-sum semi-Markov games for this modified subclass. We propose a more realistic pollution tax model for this subclass of SeR-SIT semi-Markov games than pollution tax model for SeR-SIT stochastic game. Finite step algorithms are given for the discounted and for the zero-sum undiscounted cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.