Abstract

In this paper, we show that first-order logic programs with monotone aggregates under the stable model semantics can be captured in classical first-order logic. More precisely, we extend the notion of ordered completion for logic programs with a large variety of aggregates so that every stable model of a program with aggregates corresponds to a classical model of its enhanced ordered completion, and vice versa.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.