Abstract

In this paper, we propose a translation from normal first-order logic programs under the answer set semantics to first-order theories on finite structures. Specifically, we introduce ordered completions which are modifications of Clark's completions with some extra predicates added to keep track of the derivation order, and show that on finite structures, classical models of the ordered-completion of a normal logic program correspond exactly to the answer sets (stable models) of the logic program.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.