Abstract

We have utilized nanosphere lithography (NSL) to fabricate ordered Au nanodisk and nanohole arrays on substrates and have studied the localized surface plasmon resonance (LSPR) of the arrays. Through these investigations, we demonstrate that the angle-dependent behavior of the LSPR in the Au nanodisk arrays enables real-time observation of exciton-plasmon couplings. In addition, we show that the NSL-fabricated Au nanohole arrays can be applied as templates for patterning micro-/nanoparticles under capillary force. The unique structural and plasmonic characteristics of the Au nanodisk and nanohole arrays, as well as the low-cost and high-throughput NSL-based nanofabrication technique, render these arrays excellent platforms for numerous engineering applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call