Abstract

Ordered arrays of high-quality single-crystalline α-Si 3N 4 nanowires (NWs) have been synthesized via thermal evaporation and detailed characteristics of the NWs have been analyzed by employing scanning electron microscope (SEM) along with energy dispersive spectroscopy (EDS), high-resolution transmission electron microscope (HRTEM), X-ray diffraction (XRD), X-ray photospectroscopy (XPS), infrared (IR), photoluminescence (PL) and in situ I–V measurements by STM/TEM holder. The microscopic results revealed that the NWs having diameter in the range of ~30–100 nm and length in microns. Furthermore, the NWs are found to be single crystalline grown along [0 0 1] direction. The elemental composition and valence states of elements are analyzed by EDS and XPS. The room temperature PL spectra exhibit a broad range visible emission band. The electron transport property of a single NW illustrates the symmetric I–V curve of a semiconductor. The possible growth mechanism is also briefly discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.