Abstract

Low-energy (20–520eV) hydrogen ion irradiations were performed at W surface temperature of 373–1073K and a fluence ranging from 5.0×1023 to 1.0×1025/m2. Conductive atomic force microscopy (CAFM) as a nondestructive analytical technique was successfully used to detect irradiation-induced defects in polycrystalline W. The size and density of these nanometer-sized defects were strongly dependent on the fluence of hydrogen ions. Both ion energy (E) and temperature (T) play a crucial role in determining the ordering of nanometer-sized defects. Ordered arrangements were formed at relatively high E and T. This can be attributed to the stress-driven ripple effect of defect growth at crystal grains, resulting in the movement of W lattice along one certain crystal planes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.