Abstract

Rotors and switches are elementary building blocks of molecular machines. To achieve more advanced functions, these units have to be integrated into solid-state devices, which triggered interest in mounting these functional units in well-defined geometries onto surfaces. While vertically oriented switches and rotors have been obtained by various strategies, the design of surface-parallel switches and of altitudinal rotors with an in-plane oriented rotation axis has proven to be more difficult. We here demonstrate a molecular adlayer system with highly defined geometry and laterally oriented functional groups that combines facile photoswitching and rotation. We employ a custom-designed molecule with two platforms and pillars that span an azobenzene unit between them. The molecules form well-ordered monolayers on Au(111) with the azobenzene units parallel to and above the surface. Spectroscopic data and density functional calculations suggest that in the trans configuration, at room temperature, the azo uni...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call