Abstract

In this paper, we propose a novel concordance coefficient, called order statistics concordance coefficient (OSCOC), to quantify the association among multichannel biosignals. To uncover its properties, we compare OSCOC with three other similar indexes, i.e., average Pearson's product moment correlation coefficient (APPMCC), Kendall's concordance coefficients (KCC), and average Kendall's tau (AKT), under a multivariate normal model (MNM), linear model (LM), and nonlinear model. To further demonstrate its usefulness, we present an example on atrial arrhythmia analysis based on real-world multichannel cardiac signals. Theoretical derivations as well as numerical results suggest that 1) under MNM and LM, OSCOC performs equally well with APPMCC, and outperforms the other two methods, 2) in nonlinear case, OSCOC even has better performance than KCC and AKT, which are well known to be robust under increasing nonlinear transformations, and 3) OSCOC performs the best in the case study of arrhythmia analysis in terms of the volume under the surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call