Abstract

The order preserving pattern matching (OPPM) problem is, given a pattern string p and a text string t, find all substrings of t which have the same relative orders as p. In this paper, we consider two variants of the OPPM problem where a set of text strings is given as a tree or a DAG. We show that the OPPM problem for a single pattern p of length m and a text tree T of size N can be solved in \(O(m+N)\) time with O(m) working space if the characters of p are drawn from an integer alphabet of polynomial size. The time complexity becomes \(O(m \log m + N)\) if the pattern p is over a general ordered alphabet. We then show that the OPPM problem for a single pattern and a text DAG is NP-complete.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.