Abstract

The self-assembly behavior of AB diblock copolymers under cylindrical confinement is investigated using the self-consistent field theory. We focus on the impact of the confinement on the order-order transitions of three-dimensional morphologies by constructing two types of phase diagrams with continuously varying block compositions. One type is with respect to the block composition and the immiscibility parameter for various pore sizes, in which the order-order transitions are shown to be strongly impacted by the pore curvature and thus largely different from the bulk ones. Note that the morphologies are categorized by the intrinsical geometry of their domains, i.e., that helical morphologies are regarded as one type of cylindrical phase. Another type of phase diagram is with respect to the block composition and the pore diameter, which exhibits a number of interesting order-order transitions, especially the transition sequence from a straight line of spheres, to one straight cylinder and stacked disks as the pore diameter increases. A critical point is observed at which the stability region of the straight cylinder vanishes and thereby the spheres transform into the stacked disks continuously. The mechanism of these phase transitions is rationalized in the context of the bulk factors as well as an additional factor, i.e., the competition between the spontaneous curvature of the copolymer and the imposed curvature by the nanopore.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call