Abstract

The Standard Model of particle physics is known to be incomplete. Extensions to the Standard Model, such as weak-scale supersymmetry, posit the existence of new particles and interactions that are asymmetric under time reversal (T) and nearly always predict a small yet potentially measurable electron electric dipole moment (EDM), d(e), in the range of 10(-27) to 10(-30) e·cm. The EDM is an asymmetric charge distribution along the electron spin (S(→)) that is also asymmetric under T. Using the polar molecule thorium monoxide, we measured d(e) = (-2.1 ± 3.7stat ± 2.5syst) × 10(-29) e·cm. This corresponds to an upper limit of |d(e)| < 8.7 × 10(-29) e·cm with 90% confidence, an order of magnitude improvement in sensitivity relative to the previous best limit. Our result constrains T-violating physics at the TeV energy scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call