Abstract

Carbon materials with defect-rich structure are highly demanded for various electrochemical scenes, but encountering a conflict with the deteriorative intrinsic conductivity. Herein, we build a highway-mediated nanoarchitecture that consists of the ordered pseudographitic nanodomains among disordered highly nitrogen-doped segments through a supramolecular self-assembly strategy. The “order-in-disorder” nanosheet-like carbon obtained at 800 °C (O/D NSLC-800) achieves a tradeoff with high defect degree (21.9 at% of doped nitrogen) and compensated electrical conductivity simultaneously. As expected, symmetrical O/D NSLC-800 electrodes exhibit superior capacitive deionization (CDI) performance, including brackish water desalination (≈82 mgNaCl g−1 at a cell voltage of 1.6 V in a 1000 mg L−1 NaCl solution) and reusage of actual refining circulating cooling water, outperforming most of the reported state-of-the-art CDI electrodes. The implanted pseudographitic nanodomains lower the resistance and activation energy of charge transfer, which motivates the synergy of hosting sites of multiple nitrogen configurations. Our findings shed light on electrically conductive nanoarchitecture design of defect-rich materials for advanced electrochemical applications based on molecular-level modulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.