Abstract
We develop a molecular-statistical theory of the smectic-A-smectic-C transition which is described as a transition of the order-disorder type. The theory is based on a general expansion of the effective interaction potential and employs a complete set of orientational order parameters. All the order parameters of the smectic-C phase including the tilt angle are calculated numerically as functions of temperature for a number of systems which correspond to different transition scenario. The effective interaction potential and the parameters of the transition are also calculated for specific molecular models based on electrostatic and induction interaction between molecular dipoles. The theory successfully reproduces the main properties of both conventional and so-called "de Vries-type" smectic liquid crystals, clarifies the origin of the anomalously weak layer contraction and describes the tricritical behavior at the smectic-A-smectic-C transition. The "de Vries behavior," i.e., anomalously weak layer contraction is also obtained for a particular molecular model based on interaction between longitudinal molecular dipoles. A simple phenomenological model is presented enabling one to obtain explicit expressions for the layer spacing and the tilt angle which are used to fit the experimental data for a number of materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.