Abstract

Electrosprays have diverse applications including protein analysis, electrospinning, and nanoencapsulation for drug delivery. We show that a variety of electrospray regimes exhibit fundamental analogy with the nonlinear dynamics of a dripping faucet. The applied voltage in electrosprays results in additional period doublings and temporal order-chaos-order transitions. Attractors in the return maps show logarithmic self-similarity in time, suggesting self-similar capillary waves on the meniscus. The bifurcations in ejection time can be explained by phase variations between capillary waves and pinch-off conditions and by ejection mode changes due to contact angle variations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.