Abstract

We investigate the properties of the XY pyrochlore antiferromagnet with local <111> planar anisotropy. We find the ground states and show that the configurational ground state entropy is subextensive. By computing the free energy due to harmonic fluctuations and by carrying out Monte Carlo simulations, we confirm earlier work indicating that the model exhibits thermal order-by-disorder leading to low temperature long-range order consisting of discrete magnetic domains. We compute the spin wave spectrum and show that thermal and quantum fluctuations select the same magnetic structure. Using Monte Carlo simulations, we find that the state selected by thermal fluctuations in this XY pyrochlore antiferromagnet can survive the addition of sufficiently weak nearest-neighbor pseudo-dipolar interactions to the spin Hamiltonian. We discuss our results in relation to the Er2Ti2O7 pyrochlore antiferromagnet.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call